20^2+b^2=1600

Simple and best practice solution for 20^2+b^2=1600 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20^2+b^2=1600 equation:



20^2+b^2=1600
We move all terms to the left:
20^2+b^2-(1600)=0
determiningTheFunctionDomain b^2-1600+20^2=0
We add all the numbers together, and all the variables
b^2-1200=0
a = 1; b = 0; c = -1200;
Δ = b2-4ac
Δ = 02-4·1·(-1200)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*1}=\frac{0-40\sqrt{3}}{2} =-\frac{40\sqrt{3}}{2} =-20\sqrt{3} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*1}=\frac{0+40\sqrt{3}}{2} =\frac{40\sqrt{3}}{2} =20\sqrt{3} $

See similar equations:

| 26q-0.9q^2-5=0 | | 15+k=45 | | 0=-0.9q^2+26q-5 | | 9÷t=8 | | F(2)=-9x-10 | | (6x÷3)+x+27=6 | | 41/2+p=-51/2 | | 3/7v=12 | | 5x+20+x+10=180 | | 3/25xX=12/275 | | 3/25xX=12/2755 | | v/8/75=7 | | -1-7x=8-4x | | 5x+20=x+10 | | x-23=99 | | 1.03^n=100 | | 10+2(2x+1)=7x-3 | | 2x/5+x/3+8000=x | | 17+11x=12x+9 | | 5.1=t/5.3 | | 7/2a+1=6 | | x/4/3=7/9 | | 25^1/2×5^-3=5x | | 14(x-5)=1 | | |9-3k|=3 | | 12x-12x=-36+12 | | 2w+8=4w+18 | | 8x+2x-10=1-x | | 4X^2,x=3 | | 70=4x+22 | | 3(4v-1)+3v=-(v+3) | | x=-2.6 |

Equations solver categories